Spanning and weighted spanning trees

A different kind of optimization

(graph theory is cool.)
Spanning and weighted spanning trees

A different kind of optimization

(graph theory is cool.)

Definitions and examples
Graphs

A graph is a collection of vertices (that look like dots ●) and edges (that look like curves ——), where each edge joins two vertices. (Formally, a graph is a pair $G = (V, E)$, where V is a set of dots and E is a set of pairs of vertices.)
A graph is a collection of vertices (that look like dots ●) and edges (that look like curves ---), where each edge joins two vertices.

(Formally, a graph is a pair \(G = (V, E) \), where \(V \) is a set of dots and \(E \) is a set of pairs of vertices.)

Here are a few examples of graphs:
Graphs

A graph is a collection of vertices (that look like dots ●) and edges (that look like curves ——), where each edge joins two vertices. (Formally, a graph is a pair $G = (V, E)$, where V is a set of dots and E is a set of pairs of vertices.)

Here are a few examples of graphs:

Two vertices joined by an edge are called adjacent (see a and b). Two edges that meet at a vertex are called incident (see e and f).
Subgraphs

A subgraph is a graph that is contained within another graph. For example, here the second graph is a subgraph of the fourth graph.
Subgraphs

A *subgraph* is a graph that is contained within another graph. For example, here the second graph is a subgraph of the fourth graph.

```
Here is the second graph, shown as a subgraph of the fourth graph.
```

courtesy of dr. sarah-marie belcastro, http://www.mathily.org
Trees

In a *connected* graph, there is a way to get from any vertex to any other vertex without leaving the graph.
Trees

In a *connected* graph, there is a way to get from any vertex to any other vertex without leaving the graph. The left graph above is *not* connected.
In a *connected* graph, there is a way to get from any vertex to any other vertex without leaving the graph. The left graph above is *not* connected.

A *cycle* is a sequence that alternates between vertices and edges, and whose only repetition is the first/last vertex.
In a *connected* graph, there is a way to get from any vertex to any other vertex without leaving the graph. The left graph above is *not* connected.

A *cycle* is a sequence that alternates between vertices and edges, and whose only repetition is the first/last vertex. A cycle is shown by itself as the top part of the left graph above.
In a *connected* graph, there is a way to get from any vertex to any other vertex without leaving the graph. The left graph above is *not* connected.

A *cycle* is a sequence that alternates between vertices and edges, and whose only repetition is the first/last vertex. A cycle is shown by itself as the top part of the left graph above.

A *tree* is a graph that is connected and has no cycles. One is shown to the right above.

A *forest* is a bunch of trees.
Spanning Trees

A *spanning tree* is a tree that contains all the vertices of a given graph. Basically, it is the largest tree contained in a graph.
Spanning Trees

A *spanning tree* is a tree that contains all the vertices of a given graph. Basically, it is the largest tree contained in a graph.

Here are spanning trees of the above-pictured graphs:
Spanning Trees

A spanning tree is a tree that contains all the vertices of a given graph. Basically, it is the largest tree contained in a graph.

Here are spanning trees of the above-pictured graphs:
Weights are labels on the edges and/or vertices of a graph that often denote costs or distances or energies. Here’s a weighted graph:
Weighted Spanning Trees

The *total weight* of a spanning tree is the sum of the weights on its edges.
A *minimum-weight* spanning tree is one that has the lowest possible total weight.
Weighted Spanning Trees

The *total weight* of a spanning tree is the sum of the weights on its edges.

A *minimum-weight* spanning tree is one that has the lowest possible total weight.

Here are a weighted graph, a spanning tree of total weight 6, and a spanning tree of total weight 7; are either of these minimum-weight spanning trees?
Time for Worksheets!

No, really. It’s time to work on worksheets now.
Final notes: MathILy

- intensive summer program for super-smart, super-cool students
- extremely interactive and silly and inventive classes
- discrete and applicable college-level mathematics
- Root class, then Week of Chaos, then Branch classes

http://www.mathily.org