
� Daily Gathers
�.� Math Movies! ��Daniel & Shlok

Associativity What is associativity? Similarly, what is associative? Wikipedia de�nes it as "a property of
some binary operations, which allows rearrangement of the parentheses." But as an average In�nite Series
viewer, you are inclined to go above and beyond. You don’t want to ask what is associative; you want to
ask what isn’t associative. The answer is: cars traveling on donuts.

The next logical step is to make the jump to associahedrons, where the area between edges, the volume
between faces, and the hypervolume between hyperplanes are all homotopies. "Why", you ask? We have
no idea.

Homage to Hilbert Google just released �-D Snake!!! With multiple playable snakes!!! With my
upcoming senioritis, watch me get the high score of ���� in �-D Snake in the middle of AP PreCalc.

Not Knots What’s a not? It’s knot what you think it is. Knotmaking the wrong assumption is necessary
with nots. The Shlomorromean Rings are the mess of nots we will consider today. Grab � nots and insert
them such that no not can be separated from the other two. That mess of nots might knot be possible.
But make it work somehow. Now, grab the cone point of their space, and stretch it to in�nity. The space
this will create for each Shlomorromean Rings will span all of three-dimensional space.

Now, you have a space full of Shlok. It’s pretty useless.

Hyperbolic Rhombicdodecahedron It bends light. AndWater.
And Earth. And Fire. And Air.

The Divided Man

• “That’s a man!! I thought it was an elephant!”
—Clàudia

• “In what mental state do you have to be in to do that?”
—Audrey

Somehow, this is the most heart-wrenching math movie by far.

Geodesics The trails were vibrating on the platycodons. Robert was vibrating on his water bottle during
his sleep.

Rotating Rooks Place a rook on a sphere. Moving it around causes it to rotate. This doesn’t hold true
on a chessboard.

If you place it on a Tworus, then it will also rotate. But in the opposite direction. Now, try this on a
Mhorus. To create it, use the leftover donuts from Gabe’s Birthday; there are still eight dozen left.

Danlein Bottle Commence Explosions. Cue Loud Music. Display Self-Intersections. Competing
for the Danius Strip in the Uncle Danny’s Grand Prix, you hear Uncle Danny explain the shape of his
platycodon/track using his native Russian. Vroom Vroom... Zoom Zoom...
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�.� In a world where friends of your friends are also your friends,
Möbius came to invert it all. ��Audrey
Rafa from Loyola University Chicago visited us on Tuesday armed with math memes and posets. A poset,
or partially ordered set, is a set P together with a relation  that is:

• Re�exive: x  x for all x 2 P. AKA I ammy own friend!

• Transitive: If x  y and y  z, then x  z for all x, y, z 2 P. AKA Friends of my friends are my
friends!

• Antisymmetric: If x  y and y  x then x = y. AKAMy only true friend is myself! (. . . antisocial?)

We proceeded to discuss and draw diagrams depicting posets of subsets�n, chains �n, divisors�n, and
partitions ⇧n. We also discussed isomorphic posets; Rafa showed us that since posets are products of
chains,�n � C� ⇥ · · · ⇥ C� where C� is multiplied n times.

After familiarizing ourselves with properties of posets, Rafa had us play a simple recursive game. We
computed the Möbius values in some example posets, using our two recursive de�nitions: �(x, x) = � andÕ

xzy �(x, x) = � for x < y.

After this introduction to posets, Rafa showed us some really cool connections to other topics we have
been learning! The patterns introduced in this game come up in problems that may seem completely
unrelated, such as graph colorings, hyperplanes, and topology.

In proper colorings of graphs, we can de�ne the chromatic polynomial χG (x) of a graphG as the number
of ways we can properly color G with at most x colors. We found a surprising correlation between the
coe�cients of the polynomial and the Möbius values of a poset of partitions.

Moving on to the next connection—hyperplanes in a vector space—we found we could create a poset to
re�ect the intersections of the hyperplanes. Rafa introduced a theorem that uses this poset to calculate the
number of regions and bounded regions in the hyperplane arrangement!

Lastly, posets can be used in geometry and topology as well! Rafa introduced us to the order complex of a
poset, andwe calculated the reducedEuler characteristic, a quantity preserved after "bending and stretching
space", of some complexes. Like the other connections, we found a cool relation to the uppermostMöbius
value in a poset.

And that’s a wrap on Rafa’s amazing Daily Gather!
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�.� Goat Archeology: Gone But Not Forgoatten ��Noam
Ever wondered where theMathILy-EST students go while we have our classes? Well, Charlie has �nally
revealed the answer. These budding archaeologists have been �ying in Brian’s private jet through the
CarpathianMountains of Romania, discovering the secrets of an ancient goat society. Charlie dazzled us
with his stories of the tablets MathILy-EST has found, with images of the marvelous goat cities from the
days of yore. These cities have mountains connected by goat paths, which Charlie and his colleagues have
been studying. These goat paths follow three rules:

�. Every two mountains have exactly one goat path between them.
�. Every goat path passes through the same number of mountains.
�. Every mountain has the same number of goat paths through it.

There are two types of cities, Eni�a and Jø̋rp, whichMathILy-EST �nds particularly interesting, subject
to these rules:

Eni�a • For every goat pathG and a mountainM 8 G, there exists a (unique) goat pathG0 such that
M 2 G0, andG \ G0 = ú.

• There exist �mountains not all on one goat path.

Jø̋rp • Every � goat paths meet at exactly one mountain.
• There exist �mountains, no � of which are on the same goat path.

We found some examples of both Eni�a and Jø̋rp cities, and tracked the number of paths permountain and
number of mountains per path for each example city. For Jø̋rp cities, these two values were suspiciously
the same.

Bella then explained the terrible predicament of these goat cities. There was no lighting, and so all the goats
were tripping o� of cli�s! Bella’s plan was to light up all the paths using watchtowers while minimizing
the number of watchtowers placed. We worked on this for a while, and Alo showed us that in any Jø̋rp we
can always light up an entire city by placing our watchtowers along every mountain contained in one goat
path. We were left with a question: how do we prove this con�guration is minimal?

It appeared thatwe had found away to light up any goat citywe pleased, but then Shari delivered somemore
terrible news: the goat economy had collapsed! Now, instead of watchtowers, they only have �ashlights to
illuminate their paths. We want to �nd out if a well-lit city is still possible. According to Jaedon, in any
Jø̋rp city, it is! And now our extremely frugal goats can live happily ever after!

Ethan then explained MathILy-EST’s exploration into probabilistic city planning and the mysterious
number q, which is related to the magic pouches from Frank’s Daily Gather. q appears in a bunch
of formulas related to these goat cities, and MathILy-EST has been hard at work trying to �nd the
probability that a city is well-lit. This involves drawing curves through the treacherous goat mountains
and �nding tangency lines and singularities, which are where a curve passes through the same point twice.
These tangencies correspond to �ashlights and the singularities correspond to watchtowers, making them
extremely useful to determine the probabilities our archaeologists yearn for.

Anna then explained how they’ve found upper and lower bounds for these probabilities in Eni�a cities with
one watchtower. These bounds are given by the very simple formulas q�q� and e�q���q�q� (� � q��)q���,
respectively. Anna showed us how even for small values of q, these give extremely small probabilities.
Ren followed up by presenting the city planners’ calculations for the lower bound and upper bound of
probabilities in cities with at least one watchtower. This involved a lower bound of (q� + q + �)q��(q+�) �
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�q�+q+�
�

�
q��(�q+�) and an evenmessier upper bound, but for large and complex cities (the onesMathILy-EST

cares most about) the actual value is close to q��q��.

Vera concluded the Daily Gather by describing the workMathILy-EST has been doing for NAGA, the
National Association of Goat Astronomy. Here, our archaeologists have planes and lines that are tangent
to surfaces. In this strange new world of the space goats, we can have far weirder surfaces, with far weirder
results. We wondered at the might of MathILy-EST’s pioneers in archaeology and goat astronomy when
Vera showed us how to take an Eni�a city and crush it into a ball. What was once a plane was now a sphere.
What was once a line was now a circle. What was once a point. . .was still a point.

Vote Goat!

�.� I am average at chess �� Sophia J
Does anybody know how to play chess? Or rather, does anybody not know how to play chess? Brian
says he hasn’t played in �� years. Rather than remember where all the pieces can move, he will place only
queens (the best piece, and he will not take any objections because who’s giving the Daily Gather, him or
you?) on the board. If we placed the queens along the main diagonal (top left to bottom right) of an n⇥ n
chessboard, all spaces will be either occupied or threatened.

We know we can �ll the main diagonal with queens, but what if we don’t have n queens? Well, we can
remove any queen and the cells she attacked are still covered. But can we remove two queens? Or three?
According to Noam, we can remove any two queens with an even distance between them (i.e. an odd
number of queens between them). If we pretend the queens are rooks, only four squares would fail to be
threatened. However, the queen directly in the middle of the two queens (i.e. the “average” of the two
queens that were removed) can threaten these squares through diagonal attacks, and we can use a parity
argument to show that such a queen does not exist when the distance between the two queens is odd.
Thus, the removed queens must be in all even or all odd positions.

Brian then announces that he is now a computer scientist, much to everyone’s dismay. He indexes the n
positions on the diagonal as {�, �, �, . . . , n � �}. Without loss of generality, he removes queens from the
even positions �k�, �k�, . . . , �k� such that no element is the average of two other elements.

Next, Brian decides to make the chessboard in�nite, and de�nes a subset S ✓ Z�� to be average-free if
no element of S is the average of � other elements of S. He then asks if it is possible to build an in�nite
average-free set. We begin constructing S greedily by going through each of the nonnegative integers in
order and adding it to S only if adding it will maintain an average-free S. We observed that the elements
of the set we constructed seemed to have something to do with powers of �, so we tried writing out
the numbers we added to S in base �. Interestingly, all of the digits were �s or �s! Huh. Naturally, we
conjectured that the set we constructed consisted of all non-negative integers whose base � representations
contain only �s and �s.

We were presented with two questions. First, is this set actually what we get from our algorithm? That
is, will the algorithm ever result in numbers outside the set? And second, is the set actually average-free?
We proved the former by induction, inspired by Athithan’s observation that if there existed an element k
containing a digit � in base �, we can �nd another element � of S such that k+�

� 2 S. And, we proved the
latter by showing that the restriction on digits in base � forces a = b if a+b

� = c for a, b, c 2 S.
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