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The Dangers of Pokémon Go!

Talk by Hallie, article by Karol

Pokémon Go! is a dangerous game. This is why a local architect that plans on building
new PokéGyms asks you for help. He wants to build n PokéGyms by starting with three that
form a triangle and then triangulating it (as we please) so that the other gyms are vertices
of the other triangles. But there are restrictions. Our gyms come in three different colors
— red, blue and yellow — and the three outer gyms must each have different colors. A gym
on the edge between color a and b (of the outer triangle) can only be of color a or b, so for
example on the edge between red and blue there can only be red or blue gyms. However, the
gyms on the inside of the biggest triangle can be of any color. To reduce fighting between
gyms, our architect wants any “smallest” triangle to have vertices of at most 2 distinct colors.

Moreover, Pokémon trainers can travel between areas bounded by gyms. To get from
one region to another, they must cross an edge between two gyms. Red trainers can travel
through red-yellow edges, blue trainers can travel through blue-red edges, and yellow trainers
can travel through yellow-blue edges. Furthermore, each trainer can cross a certain edge
exactly once.

With this information we can ask two questions: “Can the configuration demanded by
the architect be achieved?”, and “Can PokéTrainers get inside the area of PokéGyms and get
out?”

During the Daily Gather, we made conjectures about both questions. We proved that it
is impossible to fulfill the architect’s original request. We also showed that the number of
triple-colored triangles is always odd. Regarding the second question, we made observations
such as: “you can exit the area only on the side you entered it”, “for each ’smallest’ triangle
you can travel through at most two edges of that triangle,” and “to be able to escape all
entrances must be paired.” We also showed examples where certain trainers could or could
not exit the area.
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Cutting up Not Me

Talk by Brian, article by Kaili

Is Brian’s face a polytope? In Wednesday’s daily gather, Brian revealed that his face
is not a polytope and introduced us to “scissor congruence.” Two polygons P1 and P2 are
scissors-congruent if we can cut P1 a finite number of times into a finite number of pieces,
rearrange the pieces, and connect them using anti-scissors to create P2. For example, an
isosceles right triangle is scissors-congruent to a square of the same area, since we can cut
along an altitude of the triangle to create two smaller right triangles and connect them to
create a square.

After we investigated several examples of possibly scissors-congruent polygons, an im-
portant conjecture arose: any two polygons of the same area are scissors-congruent. To
prove this, we first proved that it is possible to turn any polygon into a square through the
following steps.

1. Triangulate the polygon.
2. Turn the resulting triangles into rectangles.
3. Turn the rectangles into squares.
4. Merge the squares into a super-square.

To prove that any polygon can be triangulated (Step 1), we inducted on the number of
vertices, v, in a polygon. For our base case, v = 3, the claim was true since a triangle itself
is triangulated, and this is a trivial case. Our inductive hypothesis was that any k-gon with
k  n for some n can be triangulated. In our inductive step we showed that any (k+1)-gon
can be triangulated. We considered 3 adjacent vertices U , V , W in our polygon, such that
U was between V and W and the angle at U is less than ⇡. If 4UVW were completely
contained within the polygon, then we could remove it and apply the inductive hypothesis.
If 4UVW were not completely contained in the polygon, we could orient the polygon so that
U became the leftmost vertex of U V and W , and choose X, the leftmost vertex contained
within 4UVW . We could then cut along UX to get two k-gons with k  n and apply the
inductive hypothesis. Thus, we proved that Step 1 was possible for any polygon.

Next, we confirmed that any triangle can be transformed to a rectangle of equal area
(Step 2). Cutting the triangle along its mid-line M and the altitude perpendicular to M
gave us two triangles and one quadrilateral, which we rearranged and connected to form a
rectangle as in the figure below.

Then, we proved that it is possible to turn any rectangle into a square of equal area
(Step 3). There were two cases to consider. The first case is demonstrated in Figure 1.
To transform the rectangle into the dotted square, we cut along the thick line. By ASA
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Congruence, we showed that 4BCJ ⇠
=

4GFH and 4FDC ⇠
=

4HIJ . Thus, we can move
4BCJ and 4FDC to the positions of their respective congruent triangles to create the
square. In the case that the rectangle could not be cut and rearranged in this way (Figure
2), we could cut the rectangle in half, stack the two pieces, and connect them. We could
repeat this process until the side lengths are within a factor of 4 to each other. Then, we
perform the same cut and connections as in the first case. Thus, we proved that Step 3 was
possible for any rectangle.
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Figure 1: *
Figure 1

Figure 2: *
Figure 2

Lastly, we proved that any two squares can be turned into a single, larger square (Step
4). We first considered a configuration of two squares ABCD and BEFG as in the diagram
below and cut along the thick lines. Again, we used ASA Congruence to show that 4DAH ⇠

=

4HEF ⇠
=

4DCJ ⇠
=

4JGF . Thus, we could move 4DAH and 4HEF to the positions of
4DCJ and 4JGF and connect them to create a single, larger square DHFJ . Using this
algorithm, we could merge all the squares resulting from Step 3 to form the super-square in
Step 4.
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We ultimately proved our original claim by using our proofs of Steps 1-4 in conjunction
with the logic that if we can turn polygon P1 into a super-square and turn the super-square
into polygon P2, then we can turn P1 into P2. Brian declared that this proved claim is
known as the 2-Dimensional Theorem; he then posed a final question. That is, what are the
analogues of this theorem in 1 dimension and 3 dimensions? Brian closed his presentation
by imparting to us that the so-called “3-Dimensional Theorem” is false.
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Life Lessons Learned from Primality Testing

Talk by Rachel Shorey, article by Adam

The Thursday’s Daily Gather was delivered by Rachel Shorey from The New York Times.
She talked about the significance of the prime numbers and showed us some algorithms that
can check whether or not certain number is a prime.

Our first idea of checking the primality of a certain number n was to divide it by every
number smaller than n. Immediately, we figured out that dividing by every smaller number
doesn’t make any sense and that we only have to divide by the primes that are smaller than
n. Rachel challenged this simple idea, informing us that the run time of this algorithm would
be at best 1024 bits - approximately something between 2

1023 and 2

1024. In the best-case
scenario the run time would be around 9.480752e+ 44. At this point it is worth mentioning
that the universe is only 4.3233912+17 old...

Then, Rachel showed us the Monte Carlo Algorithm — a randomized algorithm whose
running time is deterministic, but whose output may be incorrect with a certain (typically
small) probability. An example of such algorithms is the Miller-Rabin primality test — one
of the most common algorithms for checking whether or not certain number is a prime. The
Miller–Rabin test relies on an equality or set of equalities that hold true for prime values,
then checks whether or not they hold for a number that we want to test for primality. Here
is the example, which shows how this algorithm actually works:

In summary, this Daily Gather was very interesting, informative, and inspiring. Not
only did we encounter algorithms that are widely used in cryptography, but we also met
an amazing personality. Rachel’s life shows that majoring in math opens up many different
opportunities in life and for that reason is extremely valuable. No one would suppose that
after graduating in math you will be able to work at one of the best-known newspapers in
the world. In fact, she works there as a software engineer, which essentially means that
she analyzes and cleans huge amounts of data trying to find interesting information. The
conclusion of this Daily Gather is simple: study math.
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