
and 23 dimensions. Then he introduced the formal statement to this problem which is: Among all sets
X = a, b, c of unit vectors in R3, minimize max{ha, bi,ha, ci,hb, ci}

To complicate things even more, we began to ponder on lines through the origin in three dimensions. The
problem was how far “apart” can we place three lines in Rn such that these n lines are almost perpen-
dicular.The shocking answer was that we can get n lines for n dimensions when n < 58 but when n = 58
we can get 59 almost perpendicular lines and from there the number grows exponentially.

Finally, we got to the fun part. Professor Martin amazed everyone when he turned the words “Lines
through the origin” to “Linguinis through the oranges”. Oranges and linguini were distributed and our
goal was to poke linguini through the oranges and try to get the maximum amount of linguini that one
can fit when each linguini is in 45 degree angles. In the end, few people succeeded, and the others either
ate their oranges or created sea urchin-like objects out of artistic skill (Constantin).

We know that there can be at most n2 equiangular lines in Cn and a set of these lines are called a SIC-
POVM (symmetric, informationally complete, positive operator valued measure). SIC-POVMs are useful
in quantum cryptography and quantum state tomography, but no one knows how to construct them! The
only constructions so far are in all dimensions up to n = 16 and n = 19, 24, 28, 35, 48. With the other
cases, we only have algebraic proofs.

Professor Martin then explained a proof about why we can’t fit more lines until we reach R58 We find
that it was very hard to get angles smaller than 89 degrees in high dimensions.

Professor Martin ended his presentation by talking about hyperovals and how the image on his shirt is a
simple hyperoval puzzle.

3.2 Tuesday: Nathan
What do aliens mean by congruence?

Brian3 has just arrived from an alternate universe. In this universe, polygons are considered congruent if
one can be decomposed into the other. We quickly note that 2 congruent polygons must have equal area.
Can we go the other way?

Question: Is congruence symmetric? (A ⇠ B implies B ⇠ A)? Transitive? (A ⇠ B and B ⇠ C imply A
⇠ C)? Charlotte answered, “Yes, and Brian3 why aren’t you listening to me��”

If we can prove all figures with area 1 are congruent to the unit square, then we are done.

Step 1: Triangulate the polygon

We showed this was possible by induction. The Base Case is n=3, which is tautological. For the inductive
step, we simply must show that every polygon contains at least one of its diagonals. This is simple,
we simply pick a vertex and draw a line between the two adjacent vertices. If there are no vertices in
the created region then connect these two vertices. Otherwise, consider the “highest” vertex within the
created region and draw the diagonal from this vertex to the original vertex selected.
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Step 2: Go from triangles to rectangles

This can be done by choosing an acute angle of the triangle, drawing the altitude from this vertex, split-
ting the triangle into two right triangles, drawing a line through the midpoint of one of its legs parallel
to the other leg and piecing it back together.

Step 3: Go from rectangles to rectangles with side length 1

We can split the rectangles in half until their dimensions are no more uneven than 2:1. Then, we can
choose diagonals on the two rectangles that are both of length x. Then we can turn these rectangles into
parallelograms, which in turn we can turn into rectangles with one side of length x. Because these new
rectangles also have equal area, they are congruent.

Hence, we can convert any polygon of area 1 into rectangles with one side length equal to 1. After stacking
these up, we are done.

One interesting generalization is to ask the same question in three dimensions. However, the opposite re-
sult actually holds in this case: there actually are noncongruent (In Brian3’s sense of the word) polyhedra
with equal volume.

3.3 Wednesday: Alex
The Art Gallery Problem

3.3.1 Intro

During Wednesday’s Daily Gather, we talked about guarding art galleries. The question goes as such:
consider an art gallery with straight walls that form a polygon. We wish to place guards (who are lazy
and don’t move around except to turn) so that the entire art gallery is guarded at all times.

Of course, these guards can’t see through walls, but they can see infinitely far. The question posed was
such: consider a polygon with n sides. What is the maximum number of guards we will need to guard
this polygonal-art-gallery?

The group experimented with some pre-printed shapes. We found points defined as “independent wit-
nesses” if there is no point that a guard can stand on and see any two at the same time. After a bit of
testing, Max discovered a shape with 3n sides that required n guards to cover.
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This shape was called “Chvatal’s Comb”. It can be generalized to any number of spikes. Then, a proof
was shown in class for the maximal number of required guards, called Fisk’s Proof of the Art Gallery
Theorem. It can be mapped out as follows:

3.3.2 Fisk’s Proof

Fact One: Any polygon can be triangulated. We proved this in class; in general, select an acute vertex.
Then, find the two nearest vertices that are along the adjacent edges. Connect those two. Either we are
successful, or there is an in-jut. If there is an “injut”, take the nearest “injut” as our point. Repeat ad

infinitum. Hand-wavy-induction-induction.

Fact Two: Every triangulated polygon can be 3-colored. There was, unfortunately, no proper proof
shown in class.

We the select the smallest set of points of the same color and place guards on those points. This is
the solution. It follows that we have at most

⌅
n
3

⇧
guards required as an upper maximum.

3.3.3 Variations

Afterwards, the discussion was extended to a few (that is to say, two) variations. One of these was to
consider a polygon with holes; i.e. a space on the interior that was considered outside the polygon. Deal-
ing with holes makes the discussion a bit more challenging. A quick proof was shown that

⌅
n+2h

3

⇧
always

works. Using two additional edges, we can arbitrarily add a mini “space” in order to make the hole part
of the exterior, simplifying the problem to the case of a polygon with n+ 2h sides.

In 3 dimensions, the discussion becomes much more challenging. It is no longer consistently possible
to “tetrahedronalize” the shape, because a base case is currently unknown for the induction process.
Also, placing points on all the vertices bizarrely does not guarantee a solution for some polyhedra.

3.4 Thursday: Movies

3.5 Friday: Charlotte
Lisa’s Topology Stu↵

Lisa prefaced this talk by saying that we would not prove many of the concepts she would be working with.

She then described a plane P under a sphere S. The top point of S is called the north pole, or NP . She
defined a function f such that if a point x on S was connected via a line to NP , f(x) was the point on P
that line intersected with. However, the class noted that this function was not bijective, because f(NP )
is not define. So we redefined f so that its domain was S2

NP . Therefore, this function is both bijective
and continuous. Lisa told the class we could use this function as a way to think about S2 in terms of R2.
We said that S2 is the one-point compactification of R2. She then said she wanted us to try and extend
this and think about S3 as a one-point compactification of R3.

Next, we came up with several ways to create a sphere, and extended those ideas to try and help us picture
S

3. First, Lisa described a sphere as two disks (known as D2) glued together along their boundary. We
used this to define an S

3 as two D

3 glued together along their boundary. Then, we said that a sphere is
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a stack of circles glued together, with points glued on at the very top and very bottom. We used this to
say that an S

3 is a stack of spheres glued together, with points glued on at the top and bottom as well.
Finally, Lisa told the class that an S

2 is a disk, whose boundary has been sent to a point. Therefore, you
can think of an S

3 as a D

3 whose boundary has been sent to a point.

After we had done this, Lisa gave us a definition for Cartesian product. She said she wanted to think
about the Cartesian product AB as “an A worth of Bs.” Therefore, we can think of R2 = R⇥R as an R
worth of Rs, so every point in R1, the number line, has its own set of R2s.

Lisa then had the class try to use this definition to visualize and describe a series of Cartesian products.
S

1⇥S

1 can be thought of as a circle on which every point has a circle coming out of it, so it is a torus. Us-
ing the same method, we were able to say that S1⇥D

2 is a solid torus (a torus that is filled in the middle).

Lisa defined a spaghetti space as a space in which every point has a neighborhood looks likes a spaghetti
brownie. A spaghetti brownie is a region that looks like a bundle of spaghetti or wires.

Next, Lisa drew a solid torus in S

3 and placed a series of warped disks on its top and bottom, fitted around
each other like cups, as shown in Diagram 1 1. Because they fit around each other, they balloon outwards
as you get further from the center of the torus. So, the disk at the equator, E, stretches outward like a
plane, but with a hole in the middle. It is the place where two disks are attached along their boundary,
since the disks on the top and the disks on the bottom meet here, so it seems as though it should be a
sphere, based on what we previously said. However, this is still a disk, since a sphere with a hole cut out
is a disk.

After we completed this, Lisa defined a 3-manifold to be a set M such that every point has a neighborhood
that “looks like” R3. She also told us that one way to get a 3-manifold is by gluing together polyhedra.

Then, she drew the image depicted by Diagram 2. This depicts the creation of a shape by taking the
“vertical” circles on a solid torus (as shown by A), which run along circle B, and gluing them to the
“horizontal” circles on another solid torus (as shown by C), which run along circle D. This forms an S

3.
This is the same setup and result as the layering of disks previously.

She also drew Diagram 3, which shows the creation of a shape by taking the “vertical” circles in one
torus (defined the same way as before), and gluing them onto corresponding “vertical” circles on a second
torus. This creates an S

1 ⇥ S

2, a circle worth of spheres.

The last shape Lisa asked us about was a cube which was stretched so that each set of opposite faces
touched. This, we decided, forms a shape S

1 ⇥ S

1 ⇥ S

1.

1
All referenced diagrams in this section can be found on the next page.
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